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Abstract A recent extension (not modification) of semi-Riemannian geome-
try and general relativity has been proven to work for a large class
of singularities, which includes the major known ones, and to pro-
vide a description of them in terms of finite invariant geometric and
physical objects. An interesting consequence is that one can no
longer conclude that the existence of these singularities represents
the breakdown of general relativity. After a brief review of these
results, some implications on the nature and ontology of spacetime
are discussed, in particular at singularities. The proposed approach
suggests that it is relevant to understand what geometric and phys-
ical objects are more fundamental and why. In order to achieve
this goal, the underlying mathematical structures of spacetime are
deconstructed. In particular, the very notion of metric, connec-
tion, curvature, causal structure, stress-energy tensor, are revised.
The analysis suggests that the structure of lightcones plays a more
fundamental role than other structures.

1 Introduction
In this article I will discuss the geometric and physical interpretation of
spacetime singularities occurring in general relativity.

General relativity has two main problems: the prediction of singularities
[22], and the problem of quantization. Despite these problems, the predictions
of general relativity continue to be confirmed by experiment, culminating
recently with the detection of gravitational waves resulting from the merging
of two black holes [18].

Given the repeated experimental confirmation of the predictions of gen-
eral relativity as compared to the alternative theories, we should consider
more carefully what general relativity itself has to say about singularities.
This motivated my research program to find a natural formulation of general
relativity in terms of variables that remain finite at singularities, cf. [33] and
references therein. I will briefly review these results, and then discuss the ge-
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ometric and physical interpretation of singularities and singular spacetimes,
as well as the implications on the nature and ontology of spacetime.

2 Spacetime singularities
In general relativity the metric tensor is dynamic, and so are the Levi-Civita
connection (needed for covariant derivatives), the geodesics, and the Riemann
curvature. Einstein’s equation specifies how the geometry and the matter
fields evolve in an interdependent way. The metric is a symmetric tensor,
specified at each point, in a coordinate system, by a symmetric 4⇥ 4 matrix.
The entries gab of the matrix are dynamical quantities. Both geometry and
the field equations are based on the metric, and they can work in their usual
form only if we assume that the determinant of gab never vanishes, and that
each component gab is finite, and that their first and second order partial
derivatives are finite too. However, there is no guarantee that this always
happens. The dynamics changes the components gab of the metric sometimes
violently, and there is no way to be sure that the determinant will never
vanish, and that none of its components will never become infinite. When
any of these two possibilities happens, the metric is singular.

The first exact solutions of Einstein’s equation showed that this may
happen. Both the Schwarzschild black hole solution [26, 25] and the big-
bang cosmological model of Friedmann-Lemaître-Robertson-Walker (FLRW)
[10, 11, 17] have singularities. While this was hoped to be a special case due
to the too high degree of symmetry of the solutions, it was proven, through
the singularity theorems by Penrose [22, 23] and Hawking [12, 13, 14, 15],
that it is actually much more general, and unavoidable under reasonable
conditions.

The problem with singularities is that the metric becomes singular. This
means that some of the metric tensor components gab or gab become infi-
nite. This prevents the construction of the covariant derivative �

a
bc (since

�

a
bc requires the inverse of the metric) and the Riemann curvature Ra

bcd.
However, in [37] I show that differential geometry can be extended in a nat-
ural and invariant way to singular metrics gab which are smooth and become
degenerate (det g = 0).

3 Does spacetime break down at singularities?
Is the prediction of singularities the omen of the breakdown of general rela-
tivity? I will explain that it is not the case, and that only the usual equations
we use to understand them have this problem. But it is possible to change
the equations, not by modifying them, but in a way similar to a change of
variables. The resulting equations are expressed in terms of variables that do
not blow up at singularities, and outside the singularities the solutions coin-
cide with the standard ones. The new variables are as natural as the usual
ones and from certain points of view more fundamental, both geometrically

68



and physically.
In [37, 43, 34] I studied metric singularities for which the components

gab remain finite, and the determinant of the metric vanishes. Let us call
such singularities benign, and let us call malign singularities those for which
gab blows up for some components. The result was a generalization of semi-
Riemannian geometry, which I applied in subsequent articles to the spacetime
singularities in general relativity (see [33] and references therein). For a large
class of benign singularities, one can still have geometric and physical objects
that remain finite at the singularities, which satisfy invariant field equations
equivalent to the usual ones outside the singularities.

Even for the benign singularities, those for which the metric is smooth
but the determinant vanishes, one cannot construct the covariant derivative
and the Riemann curvature as usually. The reason is that �

a
bc and Ra

bcd

are constructed using the inverse of the metric, gab, which blows up when
det gab = 0.

But the lower covariant derivative (which can be expressed in terms of
the Christoffel symbols of the first kind �abc) and the lower-index form of
the Riemann curvature Rabcd remain finite at such singularities. This turned
out to be enough to describe a large class of singularities, and to rewrite
Einstein’s equation in terms of quantities that remain finite, and the solutions
are still equivalent to the solutions of the original Einstein equation outside
the singularities [37, 35]. This applies to FLRW and more general big bang
solutions [41, 30, 32].

Although for the malign singularities the problem is a bit more difficult,
there is a solution for their case as well. All examples of stationary black
holes contain malign singularities, but they can be reduced to benign singu-
larities by using singular coordinate transformations, similarly to the case of
the event horizon, which was resolved by Eddington [8] and Finkelstein [9].
Of course, unlike the case of the event horizon, for which there are singular
coordinate transformations that remove the singularity, for the r = 0 singu-
larities this will not work to remove it, because the Kretschmann invariant
RabcdRabcd blows up. But the singularity can be made benign by such trans-
formations, and then the mathematical apparatus I developed in [37, 43, 34]
can be applied. In the following I will detail this approach.

The fact that black hole singularities are apparently not benign, but ma-
lign, may be explained by considering that the usual coordinates are them-
selves singular, similarly to the case of the event horizon, which was resolved
by Eddington and Finkelstein. The singular coordinate transformation I
used, similar to their method, could be used to make the r = 0 singularity
of black holes smooth, albeit degenerate [31, 29, 40]. The mentioned meth-
ods developed for degenerate metrics with benign singularities can then be
applied, and the Schwarzschild solution can be extended analytically beyond
the singularity. Singularities turn out to be compatible with global hyper-
bolicity [31, 38], allowing thus the conservation of information during black
hole evaporation.

Not only that the singularities in general relativity turned out to be under-
standable in terms of finite quantities, but they may also provide a solution
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to the problem of quantum gravity. The geometric understanding of singular-
ities from this approach leads to the conclusion that they are accompanied by
dimensional reduction effects, which are researched in the last years because
they allow the removal of infinities in perturbative quantum gravity. Many,
perhaps most of the approaches to quantum gravity have something in com-
mon – they either imply, or rely on dimensional reduction [7, 6]. Usually the
assumptions of dimensional reduction, either direct or indirect, appear to be
made ad-hoc, in order to allow the perturbative renormalizability of quantum
gravity. However, several of these approaches are supported by the very geo-
metric properties of the singularities. In perturbative expansions in terms of
point-like particles, particles become tiny black holes, and the singularities
weight out the amplitudes in such a way that dimensional reduction effects
are possible [36].

I will now discuss the implications on what mathematical and physical
objects are more fundamental for spacetime.

4 The mathematical structure of spacetime
In general relativity, spacetime is considered to be a differentiable manifold,
endowed with a Lorentzian metric. This assumes implicitly an entire hier-
archy of mathematical structures, and it is not easy to answer the question
which are the most fundamental.

Think for example at the Euclidean plane. One may consider that the
notions of distance between two points and of angle between two lines are
fundamental. On the other hand, we can have already a well defined mathe-
matical structure even without the notions of distance and angle, based only
on the axioms specifying the relations between points and lines. The affine
geometry of the Euclidean space thus relies only on the notions of points and
lines, without appealing to a metric. This allows one for example to see that
the affine structure of a four-dimensional Euclidean space is identical to that
of the Minkowski spacetime. The difference between them is introduced by
the metric. The metric notions such as distance and angle are introduced by
the congruence axioms [16]. However, the fact that there is a rich structure
already which does not rely on the metric does not prove that the Euclidean
metric is less fundamental than the lines. We can proceed in a different or-
der, and start with a metric space, which is a set of points endowed with a
distance between pairs of points. From this, we can define a topology, and
the geodesics as those continuous curves of minimal (or extremal, in gen-
eral) length. Sometimes it is easier to consider the affine structure as more
fundamental, while other times the metric.

More generally, from mathematical point of view, a differentiable manifold
endowed with a metric, in particular the spacetime, is also a hierarchy of
mathematical structures. First, the spacetime consists of events, which form
a set. The set is endowed with a topology. Then, each open set of the
spacetime is required to be homeomorphic (topologically equivalent) with an
open set of an Euclidean space, this endowing the spacetime with a dimension
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and a structure of topological manifold. Since the fields satisfy equations with
partial derivatives, one needs to add a differential structure on top of this.

Usually, the metric tensor, which gives the geometry, is introduced as the
next structural level. Then, with the help of the metric, one defines a Levi-
Civita connection, which has the role of describing the parallel transport,
and from which one derives the geodesics and the Riemann curvature tensor.
Then, the Einstein equation is an equation relating the curvature with the
distribution of matter fields.

But geometers know that a connection does not necessarily require a met-
ric, and it can still be used to define geodesics and a curvature. Moreover,
geodesics can simply be a collection of lines, with no reference to differentia-
bility, connection, or even length.

The metric of a general relativistic spacetime is defined at each spacetime
event by 10 parameters. The metric at each event can be recovered only from
the structure of lightcones, or from the null geodesics, up to a scaling factor
[20]. This holds for distinguishing spacetimes, which cover the physically
reasonable spacetimes (for instance the condition to be distinguishing rules
out the closed timelike curves). Thus, the horismos relation (two events are
in the horismos relation if and only if there is a null geodesic joining them)
seems to be more fundamental than the metric, although we normally define
this relations using the metric. But the fact that we can just start from a
set endowed with a generic reflexive relation, which is considered to be the
horismos relation, and recover most properties of a spacetime, shows that it
is indeed possible that this relation is more fundamental than the metric [42].
This works for any reflexive relation, and the spacetime can even be discrete.
Thus, the structure of lightcones, or the causal structure of spacetime, may
be more fundamental than the metric. This plays an important role in the
interpretation of the singularities that follows from the approach discussed
here.

5 What mathematical formulation is more fun-
damental for spacetime?

If Nature prefers to use the proposed variables and atlases, it has to do this
not just as a trick to avoid the infinities at singularities, but for more fun-
damental geometric and physical reasons. In the following, I try to elucidate
these reasons.

Spacetime has a topological, a differential, and a (geo)metric structure,
built one in top of another. The more fundamental are considered to be
the topological and the differential structures. The metric is a dynamical
quantity, which depends on the stress-energy of matter. Being dynamical,
there is nothing to stop it from becoming degenerate at some places, and
this is why singularities appear. The fact that the metric is less fundamental
than the manifold structure agrees with our mathematical understanding
of differential geometry. However, physically, it is possible that the causal
structure (representing the type of intervals separating the spacetime events)
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is more fundamental than the differential structure. This view is supported
by the fact that the topology of lightcones is not affected at the important big
bang and black hole singularities, while their differential structure is affected
[39]. Thus, the structure of lightcones, or the causal structure of spacetime,
may be more fundamental than both the metric and the differential structure.
In [39] I showed that the topology of lightcones remains intact at the known
black hole and big bang singularities, and only their differential and metric
structures differ from those of a Minkowski lightcone.

Another question is related to the connection and the curvature. The
connection specifies isometries between the tangent spaces at infinitesimally
closed events. If the lower connection is more fundamental, it should also ad-
mit a geometric interpretation. The lower connection, rather than connecting
the tangent spaces, connects the tangent space at an event with the cotangent
space at an infinitesimally closed event in spacetime. Its non-commutativity
is expressed by the lower Riemann curvature Rabcd, which may be more fun-
damental, if we think that this tensor and not Ra

bcd exhibits the known
symmetries at permutations of indices, the decomposition in the Weyl and
Ricci curvatures, and the corresponding spinorial decomposition.

6 What physical objects are more fundamental
for spacetime?

Regarding the physical content, the proposed replacement of Einstein’s equa-
tion is

Rabdvol � 1

2

gabRdvol + gab⇤dvol =

8⇡G

c4
Tabdvol, (1)

which is clearly equivalent to Einstein’s outside the singularities, where
dvol 6= 0, but its terms remain finite at singularities at least in some impor-
tant cases. Is Tabdvol more fundamental than Tab? It should be, considering
that what we integrate in order to obtain the mass or the momentum are the
volume forms of the form Tabuaubdvol. This is clear for example if the stress-
energy corresponds to a fluid, Tab = (⇢ + p)uaub + pgab. One integrates the
differential forms ⇢dvol and pdvol, and not the quantities ⇢ and p, which are
not invariant, depending on the coordinates. While physicists think of them
as scalar quantities, they are as scalar as the coordinates, and are defined
in terms of a particular coordinate system. The truly invariant quantities
are the differential forms ⇢dvol and pdvol. This is consistent with the fact
that on differentiable manifolds mathematicians integrate volume forms, not
scalar or tensor fields. In addition, the Lagrangian density is Rdvol, and the
corresponding equation is (1) rather than the usual Einstein equation, which
is obtained by dividing (1) by dvol, operation prohibited when the metric is
degenerate, because dvol = 0, and it leads to infinities. In the particular case
of the FLRW spacetime, the quantities ⇢dvol and pdvol remain finite in the
Friedman equations [41].

The above considerations suggest that the quantities used in rephrasing
the geometry and physics to work at singularities are at least as adequate as
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the standard ones, both from physical and from geometric points of view.

7 Could spacetime be emergent?
The discussion we had so far about which mathematical and physical struc-
tures are more fundamental for spacetime assumes that spacetime is a con-
tinuum, as we understand it from general relativity. This does not exclude,
however, the possibility that spacetime is discrete. There are some indica-
tions that point towards the idea that at least the information in a spacetime
region has an upper bound, given by the Bekenstein-Hawking bound [5, 4].
Another argument goes along the line that since quantum mechanical sys-
tems are quantized, spacetime must be quantized as well. While this is true,
the stronger argument that quantized means discrete, and spacetime there-
fore has to be discrete, is too far-fetched. It probably has to be true that
spacetime itself is quantized in one form or another, but the argument itself
is not rigorous, because even the quantum states of the Hydrogen atom are
discrete only in what concerns the energy – the wavefunction of the electron
in the bounded states spreads continuously throughout the entire spacetime.

In other words, when one says that a quantum system is discrete, one
has to specify in which domain we consider the spectrum. When we say that
the Hydrogen atom has discrete energy levels, we talk about the frequency
domain, hence of the energy spectrum. This has no implications of discrete-
ness on the position domain. By contrary, in the position domain there is
no shred of discreteness, the wavefunctions are not even localized in a finite
region of space. This is made clear by the uncertainty principle.

As an analogy, consider the two main types of digital graphic formats.
One way is to store images as pixels, and the other way, as vector graphics.
Both are constrained physically to store only a finite amount of information,
but one of them is discrete in space, and the other one it is not. The vector
graphics formats have infinite resolution, and the image at each possible scale
is calculated using geometric formulae of lines, splines, and other geometric
figures. So digital does not necessarily mean discrete in space. Similarly,
spacetime can be such that the information enclosed in a finite region may
be finite, without the spacetime itself being discrete.

But nevertheless there are promising approaches to quantum gravity in
which spacetime itself is discrete, such as Causal Sets [27, 28], Causal Dy-
namical Triangulations [1, 2], Loop Quantum Gravity (LQG) [24], emergent
gravity [45, 44] etc. The possibility that spacetime itself is discrete is cur-
rently under active consideration, perhaps more than ever.

If spacetime itself is discrete, it may seem easier to impose conditions that
avoid the singularities. For example, the Einstein equations are not really a
limit of those of LQG, but merely an approximation. For example, in Loop
Quantum Cosmology it is easy to impose conditions that remove the big bang
singularity [3]. These conditions are not compatible with the hypothesis of
the singularity theorems in general relativity, and this is why it is possible to
avoid the occurrence of singularities.
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However, even if it is the case that spacetime itself is discrete, and it might
very well be, the results presented here about the structure of singularities can
turn out to be useful. It may still be possible to have degenerate metrics, and
hence singularities of this kind. Or, if we remove them by some condition in
some discrete spacetime theory of quantum gravity, at least the singularities
will correspond in that theory to situations where the arrangement of the
spacetime “atoms” is special, in the sense that it is highly degenerate or
extreme in some directions. For instance, the big bounce from Loop Quantum
Cosmology has a “bottleneck” of highest curvature and smallest radius, where
the bounce happens.

The experimental tests of general relativity show that the theory, even if
it would not be completely accurate, is at least a surprisingly good approxi-
mation of reality. This is usually explained by assuming that the discreteness
is manifest at very small scales. But there are other reasons that ensure this.
In [42] I showed that, no matter whether the spacetime is discrete or not, or
maybe a hybrid between the two, one can derive properties of spacetime, like
a topology, geodesics, dimension, and the metric up to a scaling factor, from
the horismos relations alone, with minimal additional constraints mainly in
the case of dimension. So the conceptual content of general relativity is
something that remains stable and goes far beyond the continuous-discrete
dichotomy. And the fact that the horismos relation, or the causal structure,
are so fundamental, is also a lesson we learn from the approach I proposed
to spacetime singularities [39].

8 Conclusions
I explained that it is possible to formulate the equations of general relativity
in a way which is equivalent to the standard way outside the singularities,
but in addition can be applied at the singularities, where they yield finite
quantities. The geometric and physical objects that I used in this approach
are invariant and natural. The fact that the proposed formulation appears
to work in regimes in which the usual formulation does not work raises ques-
tions like: “Are there other reasons to accept the proposed formulation? The
standard formulation of general relativity appeared to be natural both from
differential-geometric and physical reasons. What if the alternative formula-
tion proposed here is unnatural?”.

Such questions are legitimate, and I addressed them in this article. We
have seen that even for the Euclidean geometry of the plane, the mathemati-
cian does not always have a reason to consider one of the structures more
fundamental than another. The choice is usually dictated by the interest in a
particular structure, and by the applications. Mathematicians can take any
of the structures in the hierarchy and abstract them. The notion of forgetful
functor from category theory [19] allows ones to move from the category of
mathematical structures of a kind to the category of mathematical struc-
tures of other kind, while ignoring or forgetting some of the mathematical
structures. This abstraction does not have a prescribed order of forgetting,
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but rather there are more paths, and the different orderings of abstractions
commute. So how do we know which of the mathematical structures is more
fundamental in general relativity?

It appears natural to consider the most general structures as being more
fundamental. With this choice, the lower covariant derivative and the lower
Riemannian curvature appear to be more fundamental, since they apply to
more situations. The usual covariant derivative and Riemann curvature ob-
tained from a non-degenerate metric make sense only for such metrics, while
the ones from the proposed approach make sense to more general metrics,
which include the degenerate case and the main known singularities in general
relativity.

From physical point of view, as seen from the example of the FLRW space-
time, the densitized formulation is more natural, since the energy and pres-
sure densities ⇢dvol and pdvol correspond to actual densities, while their scalar
counterparts ⇢ and p are dependent on the coordinates in which det gab = 1,
and are not densities, being scalars. When performing integration, the den-
sities are the actual integrand, while in order to integrate scalars, one needs
to add the volume form as a correction for the integral to make sense, as it
is known from any textbook of analysis on manifolds [21].

However, while these arguments allow us to select the more adequate
geometric and physical quantities, they have no implication on the choice
of the prefered atlas or differential structure. In this case, in the spirit of
what Eddington and Finkelstein did, I suggest it is preferable to choose the
atlas which allows the quantities to remain finite. I think this argument
leaves room for improvement even in their case, because we do not have a
mathematical result which shows that this choice is unique. It may very
well be possible that a different choice leads to finite solutions, yet the solu-
tions, when extended beyond the singularity, may be different. In the case
of the Schwarzschild solution [31], an infinity of possible singular coordinate
transformations are available to make the Schwarzschild metric degenerate.
However, only one of the transformations I found results in a semi-regular
metric in the sense of [37]. This hints towards the possible existence of a
criterion for selecting the fundamental atlas, which still remains to be found.

A relevant hint in the direction of finding this criterion follows from the
importance of the causal structure of spacetime, in particular of the horismos
relation. The lightcone structure is strongly distorted at singularities, but
since the lightcones preserve at least their topological structure, this indicates
that they may be more fundamental not only than the metric, but even than
the differential structure, as explained in [42, 39]. So the condition that the
topology of the lightcones remains intact at singularities may be a relevant
condition which allows us to select the correct atlas in which the metric tensor
to be made benign or, if possible, non-singular, even if in the original atlas
it appeared to be malign.

These discussions suggest that it is time to reconsider the ontology of
spacetime in general relativity, and we accumulated several new tools that
allow us to do this in a deeper conceptual way. Spacetime has still much to
teach us, and its nature and ontology should always remain an object of crit-
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ical investigation, as it is relevant not only for the philosophical foundations,
but also as guideline for the new theories of quantum gravity.
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