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Abstract

The document presents the main conclusions from the author’s last article, regarding the struc-

ture of spacetime. Relationship between the metric tensor and field tensors are discussed, and

possible implications for further research of the presented approach are analysed.
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I. MAIN CONCLUSIONS FROM THE RESEARCH

According to [1], stress-energy tensor Tαβ for a system in a given spacetime described by a

metric tensor gαβ may be defined as

Tαβ = ϱUαUβ −
(
c2ϱ+ Λρ

) (
gαβ − ξ hαβ

)
(1)

where ϱo is for rest mass density and

ϱ ≡ ϱoγ (2)

1

ξ
≡ 1

4
gµν h

µν (3)

Λρ ≡
1

4µo

Fαµ gµγ Fβγgαβ (4)

hαβ ≡ 2
Fαδ gδγ Fβγ√

Fαδ gδγ Fβγ gµβ Fαη gηξ Fµ
ξ

(5)

where Fαβ represents electromagnetic field tensor.

The stress–energy tensor for electromagnetic filed, denoted as Υαβ may be presented as

follows

Υαβ ≡ Λρ

(
gαβ − ξ hαβ

)
= Λρg

αβ − 1

µo

Fαδ gδγ Fβγ (6)

The pressure p in the system is equal to

p ≡ c2ϱ+ Λρ (7)
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so the stress-energy tensor Tαβ for a system may be then denoted as just

Tαβ = ϱUαUβ − p

Λρ

Υαβ (8)

It has also been shown that the above stress-energy tensor can be extended by other fields

without losing the further presented properties of the solution.

The described solution and the properties of spacetime obtained thanks to it, require a

slight correction to the continuum mechanics. Thanks to this amendment in flat Minkowski

spacetime occurs

∂αU
α = −dγ

dt
→ ∂α ϱU

α = 0 (9)

thus denoting four-momentum density as ϱUµ = ϱoγ U
µ, total four-force density fµ acting

in the system is

fµ ≡ ϱAµ = ∂αϱU
µUα (10)

Denoting rest charge density in the system as ρo and

ρ ≡ ρoγ (11)

electromagnetic four-current Jα is equal to

Jα ≡ ρUα = ρoγ U
α (12)

In the flat Minkowski spacetime, total four-force density fα acting in the system calculated

from ∂β Tαβ = 0 is the sum of electromagnetic (fα
EM), gravitational (fα

gr) and other (fα
oth)

four-force densities

fα =



fα
EM ≡ −Λρ ∂βξ h

αβ (electromagnetic)

+

fα
gr ≡

(
ηαβ − ξ hαβ

)
∂β p (gravitational)

+

fα
oth ≡ ϱc2

Λρ
fα
EM (other)

(13)

As was shown in [1], in curved spacetime (gαβ = hαβ) part of the stress-energy tensor Tαβ

related to fields vanishes, and presented method reproduces Einstein Field Equations with
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an accuracy of 4πG
c4

constant and with cosmological constant Λ dependent on invariant of

electromagnetic field tensor Fαγ

Λ = − πG

c4µo

Fαµ hµγ Fβγhαβ = −4πG

c4
Λρ (14)

where hαβ appears to be metric tensor of the spacetime in which all motion occurs along

geodesics and where Λρ describes vacuum energy density.

It is also shown, that Einstein tensor describes the spacetime curvature related to van-

ishing in curved spacetime four-force densities fα
gr + fα

oth.

The presented solution creates a coherent picture in which spacetime is in fact a way

of perceiving the field (in this case: electromagnetic field). This solution allows for further

development, introducing additional fields, different parameterization and simple transfor-

mation between Minkowski spacetime and curvilinear reference systems.

It also shows, that description of motion in curved spacetime and its description in flat

Minkowski spacetime with fields are equivalent. This allows for a significant simplification

of research, because the results obtained in flat Minkowski spacetime can be easily trans-

formed into curved spacetime. The last missing link seems to be the quantum description.

II. POTENTIAL, FARTHER CONSEQUENCES

It is discussed in [2], that by imposing additional condition on normalized stress-energy

tensor in flat Minkowski spacetime with fields

0 = ∂β

(
Tαβ

ηµγT µγ

)
+ ∂α ln (ηµγT

µγ) (15)

one obtains following results

� Lagrangian density for the systems appears to be equal to L = Λρ =
1

4µo
FαβFαβ

� Stress-energy tensor may be simplified to familiar form: Tαβ = 1
µo
Fαγ∂βAγ − Λρη

αβ

� Hβ ≡ −1
c

∫
T 0β d3x acts as cannonical four-momentum for the point-like particle, it

includes electromagnetic four-potential and other terms responsible for other fields
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� The vanishing four-divergence of the canonical four-momentum Hβ turns out to be

the consequence of Poynting theorem

� Some gauge of electromagnetic four-potential may be expressed as Aµ = −Λρ

p
ϱo
ρo
Uµ

One may express canonical four-momentum Hµ as

Hµ = P µ + V µ (16)

where P µ is four-momentum and where V µ is related to the field and is calculated in [2] as

V µ = qAµ + Sµ + Y µ (17)

where Aµ is electromagnetic four-potential, Sµ due to its properties, may be associated with

some description of the spin

Sµ = −
∫

ϵoA0

γ
F0ν∂νU

µ d3x (18)

where ϵo is electric vacuum permittivity, and where Y µ is related to Poyinting four-vector

Y µ =
1

c

∫
Υ0µ d3x (19)

If, indeed, in the absence of fields, Lagrangian, Hamiltonian and Action vanish...

Since in the limit of the inertial system one gets P µXµ = mc2τ , therefore, to ensure vanishing

Hamilton’s principal function in the inertial system, one can expect that

V µXµ ≡ −mc2τ (20)

what yields vanishing in the inertial system Lagrangian in form of

−γL = F µXµ (21)

where F µ is four-force. Denoting

EΛ ≡ −
∫

Λρ d
3x (22)

mentioned reasoning yields

HµHµ −m2c2 = V µVµ − 2mγEΛ (23)
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To ensure compliance with the equations of quantum mechanics it suffices that

γEΛ =
V µVµ

2m
(24)

By introducing quantum wave function Ψ

Ψ ≡ e±iKµXµ (25)

where Kµ is wave four-vector related to cannonical four-momentum

ℏKµ ≡ Hµ (26)

from (23) one obtains Klein-Gordon equation

(
□+

m2c2

ℏ2

)
Ψ = 0 (27)

It seems, that considered method [2] may allow the analysis of the system in the quantum

approach, classical approach and the introduction of a field-dependent metric for curved

spacetime, which may help with connecting previously divergent descriptions of physical

systems.

As it was shown in [2], there is also possibility to obtain Hamiltonian density that agrees

with the classical Hamiltonian density for electromagnetic field, considered in Quantum

Field Theory. Such Hamiltonian density was currently considered mainly for sourceless

regions and to consider the system with electromagnetic field only.

According to the presented, unconfirmed yet results, it may appear that, actually, this

Hamiltonian density describes the entire physical system, containing all known interactions.

For this reason, the discussed method might also greatly simplify Quantum Field Theory

equations.
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